EMC TEST REPORT For

Guangdong Cinotex Environmental Sci-Tech Co., Ltd.

Air Purifier

Test Model: KJ1500-UFDQ

Additional Model No.: Please Refer To Page 9

Prepared for : Guangdong Cinotex Environmental Sci-Tech Co., Ltd.

Address : First Card, 5th Floor, No.122, Yulong 3rd Road, Dongsheng

Town, Zhongshan City, Guangdong Province, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test : July 01, 2020

sample

Number of tested samples : 1

Serial number : Prototype

Date of Test : July 01, 2020 ~ Sep.11, 2020

Date of Report : Sep. 11, 2020

Report No.: LCS200629061AE

EMC TEST REPORT EN 55014-1: 2017

Requirements for household appliances, electric tools and similar apparatus -- Part 1: **Emission**

EN 55014-2: 2015

Requirements for household appliances, electric tools and similar apparatus -- Part 2: Immunity - Product family standard

Report Reference No.: LCS200629061AE

Date Of Issue: Sep. 11, 2020

Testing Laboratory Name....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address......Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

District, Shenzhen, Guangdong, China

Testing Location/ Procedure ..: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Address First Card, 5th Floor, No.122, Yulong 3rd Road, Donashena

Town, Zhongshan City, Guangdong Province, China

Test Specification:

Standard..... EN 55014-1: 2017

EN 61000-3-2: 2019

EN 61000-3-3: 2013/A1: 2019

EN 55014-2: 2015

Test Report Form No.: LCSEMC-1.0

TRF Originator Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD, takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Air Purifier

Trade Mark.....: N/A

Test Model: KJ1500-UFDQ

Ratings...... 100-240V~, 50-60Hz, 120W

Result: Positive

Compiled by:

Mia Huang

Supervised by:

Jason Deng

Mia Huang/ File administrators Jason Deng/ Technique principal

Gavin Liang/ Manager

EMC -- TEST REPORT

Test Report No. : LCS200629061AE Sep. 11, 2020

Date of issue

Test Model.....: : KJ1500-UFDQ EUT.....: : Air Purifier Applicant.....:: : Guangdong Cinotex Environmental Sci-Tech Co., Ltd. Address.....: First Card, 5th Floor, No.122, Yulong 3rd Road, Dongsheng Town, Zhongshan City, Guangdong Province, China Telephone.....: : / Fax....:: : / Manufacturer.....: : Guangdong Cinotex Environmental Sci-Tech Co., Ltd. Address.....: First Card, 5th Floor, No.122, Yulong 3rd Road, Dongsheng Town, Zhongshan City, Guangdong Province. China Telephone.....: : / Fax.....:: : / Factory.....: : Guangdong Cinotex Environmental Sci-Tech Co., Address.....: : First Card, 5th Floor, No.122, Yulong 3rd Road, Dongsheng Town, Zhongshan City, Guangdong Province. China Telephone.....:: : / Fax.....:: /

Test Result according to the standards on page 8:	Positive
--	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision Issue Date 000 Sep. 11, 2020		Revisions	Revised By		
		Initial Issue	Gavin Liang		

TABLE OF CONTENT

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1.Description of Standards and Results	6
1.2.Description of Performance Criteria	7
2. GENERAL INFORMATION	8
2.1.Description of Device (EUT)	8
2.2. Support equipment List	
2.3.Test Facility	
2.4.Statement of the Measurement Uncertainty	
2.5.Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	12
4. TEST RESULTS	13
4.1.Power Line Conducted Emission Measurement	13
4.2. Clicks Measurement	
4.3. Disturbance Power Measurement	
4.4. Harmonic Current Emission Measurement	
4.5. Voltage Fluctuation And Flicker Measurement	
4.6. Electrostatic Discharge Immunity Test	
4.7. Electrical Fast Transient/Burst Immunity Test	
4.8. Surge Immunity Test	
4.9. Injected Currents Susceptibility Test	
ANNEX A	
ANNEX B	34
ANNEX C	48

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 55014-1: 2017)							
Description of Test Item	Standard	Limits	Results				
Conducted disturbance at mains terminals	EN 55014-1: 2017		PASS				
Clicks measurement	EN 55014-1: 2017		PASS				
Disturbance Power	EN 55014-1: 2017		PASS				
Radiated disturbance	EN 55014-1: 2017		N/A				
Harmonic current emissions	EN 61000-3-2: 2019	Class A	PASS				
Voltage fluctuations & flicker	EN 61000-3-3: 2013/A1: 2019		PASS				
IM	MUNITY (EN 55014-2: 2015)						
Description of Test Item	Basic Standard	Performance Criteria	Result				
Electrostatic discharge (ESD)	EN 61000-4-2: 2009	В	PASS				
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006+A2: 2010	А	N/A				
Electrical fast transient (EFT)	EN 61000-4-4: 2012	B B	PASS				
Surge (Input a.c. power ports)	EN 61000-4-5: 2014+A1: 2017		PASS				
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6: 2014	А	PASS				
Power frequency magnetic field	EN 61000-4-8: 2010	Α	N/A				
Valtage dina 600/ reduction		С	PASS				
Voltage dips, 60% reduction							
Voltage dips, 30% reduction	EN 61000-4-11: 2004+A1: 2017	С	PASS				

Test mode:

Mode 1 Working Record

1.2.Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1.Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deliver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2.Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deliver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3.Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Air Purifier

Trade Mark : N/A

Test Model : KJ1500-UFDQ

Additional Model No. KJ1500, KJ1500-U, KJ1500-F, KJ1500-D, KJ1500-Q,

KJ1500-UF,KJ1500-UD, KJ1500-UQ, KJ1500-FD, KJ1500-FQ,KJ1500-DQ,KJ1500-UFD, KJ1500-UFQ, KJ1500-UDQ, KJ1500-FDQ,KJ1500-B-UFDQ, KJ1500-B, KJ1500-B-U, KJ1500-B-F, KJ1500-B-D, KJ1500-B-Q,

KJ1500-B-UF, KJ1500-B-UD, KJ1500-B-UQ, KJ1500-B-FD,

KJ1500-B-FQ, KJ1500-B-DQ, KJ1500-B-UFD, KJ1500-B-UFQ, KJ1500-B-UDQ, KJ1500-B-FDQ, KJ1500-C-UFDQ, KJ1500-C-UFDQ, KJ1500-C-UF, KJ1500-C-D, KJ1500-C-UF, KJ1500-C-UD, KJ1500-C-UQ, KJ1500-C-FQ, KJ1500-C-DQ,

KJ1500-C-UFD, KJ1500-C-UFQ, KJ1500-C-UDQ, KJ1500-C-FDQ, KJ1300-UFDQ, KJ1300, KJ1300-U,

KJ1300-F, KJ1300-D, KJ1300-Q, KJ1300-UF, KJ1300-UD,

KJ1300-UQ, KJ1300-FD, KJ1300-FQ, KJ1300-DQ,

KJ1300-UFD, KJ1300-UFQ, KJ1300-UDQ, KJ1300-FDQ, KJ1300-B-UFDQ, KJ1300-B, KJ1300-B-U, KJ1300-B-F, KJ1300-B-D, KJ1300-B-Q, KJ1300-B-UF, KJ1300-B-UD, KJ1300-B-UQ, KJ1300-B-DQ, KJ120-B-DQ, KJ120-B-DQ, KJ120-B-DQ, KJ120-B-DQ, KJ120-B-DQ, KJ120-

: KJ1300-B-UFD, KJ1300-B-UFQ, KJ1300-B-UDQ,

KJ1300-B-FDQ, KJ1300-C-UFDQ, KJ1300-C, KJ1300-C-U, KJ1300-C-F, KJ1300-C-D, KJ1300-C-Q, KJ1300-C-UF,

KJ1300-C-UD, KJ1300-C-UQ, KJ1300-C-FQ, KJ150-C-FQ, KJ150-C-F

KJ1300-C-DQ, KJ1300-C-UFD, KJ1300-C-UFQ,

KJ1300-C-UDQ, KJ1300-C-FDQ, KJ1100-UFDQ, KJ1100, KJ1100-U, KJ1100-F, KJ1100-D, KJ1100-Q, KJ1100-UF,

KJ1100-UD, KJ1100-UQ, KJ1100-FD, KJ1100-FQ,

KJ1100-DQ, KJ1100-UFD,KJ1100-UFQ, KJ1100-UDQ, KJ1100-FDQ, KJ1100-B-UFDQ, KJ1100-B, KJ1100-B-U,

KJ1100-B-F, KJ1100-B-D, KJ1100-B-QKJ1100-B-UF,

KJ1100-B-UD, KJ1100-B-UQ, KJ1100-B-FDKJ1100-B-FQ,

KJ1100-B-DQ, KJ1100-B-UFD, KJ1100-B-UFQ, KJ1100-B-UDQ, KJ1100-B-FDQ, KJ1100-C-UFDQ, KJ100-C-UFDQ, KJ10-C-UFDQ, KJ10-C-UFDQ, KJ10-C-UFDQ, KJ10-C-UFDQ, KJ10-C-UF

KJ1100-CKJ1100-C-U, KJ1100-C-F, KJ1100-C-D,

KJ1100-C-Q, KJ1100-C-UF, KJ1100-C-UD, KJ1100-C-UQ,

KJ1100-C-FD, KJ1100-C-FQ, KJ1100-C-DQ,

KJ1100-C-UFD,KJ1100-C-UFQ,KJ1100-C-UDQKJ1100-C-F

DQ, SND-KJ900-UFDQ, SND-KJ900, SND-KJ900-U,

SND-KJ900-F, SND-KJ900-D, SND-KJ900-Q,

SND-KJ900-UF, SND-KJ900-UD, SND-KJ900-UQ, SND-KJ900-FD, SND-KJ900-FQ, SND-KJ900-DQ, SND-KJ900-UFD. SND-KJ900-UFQ. SND-KJ900-UDQ. SND-KJ900-FDQ, SND-KJ900-B-UFDQ, SND-KJ900-B. SND-KJ900-B-U, SND-KJ900-B-F, SND-KJ900-B-D, SND-KJ900-B-Q, SND-KJ900-B-UF, SND-KJ900-B-UD, SND-KJ900-B-UQ, SND-KJ900-B-FD, SND-KJ900-B-FQ, SND-KJ900-B-DQ, SND-KJ900-B-UFD, SND-KJ900-B-UFQ, SND-KJ900-B-UDQ, SND-KJ900-B-FDQ, SND-KJ900-C-UFDQ, SND-KJ900-C, SND-KJ900-C-U, SND-KJ900-C-F, SND-KJ900-C-D, SND-KJ900-C-Q, SND-KJ900-C-UF, SND-KJ900-C-UD, SND-KJ900-C-UQ, SND-KJ900-C-FD, SND-KJ900-C-FQ, SND-KJ900-C-DQ, SND-KJ900-C-UFD, SND-KJ900-C-UFQ, SND-KJ900-C-UDQ, SND-KJ900-C-FDQ, KJ720-UFDQ, KJ720, KJ720-U, KJ720-F, KJ720-D, KJ720-Q, KJ720-UF, KJ720-UD, KJ720-UQ, KJ720-FD, KJ720-FQ, KJ720-DQ, KJ720-UFD, KJ720-UFQ, KJ720-UDQ, KJ720-FDQ, KJ720-B-UFDQ, KJ720-B, KJ720-B-U, KJ720-B-F, KJ720-B-D, KJ720-B-Q, KJ720-B-UF, KJ720-B-UD, KJ720-B-UQ, KJ720-B-FD, KJ720-B-FQ, KJ720-B-DQ, KJ720-B-UFD, KJ720-B-UFQ, KJ720-B-UDQ, KJ720-B-FDQ, KJ720-C-UFDQ, KJ720-C, KJ720-C-U, KJ720-C-F, KJ720-C-D, KJ720-C-Q, KJ720-C-UF, KJ720-C-UD, KJ720-C-UQ, KJ720-C-FD, KJ720-C-FQ, KJ720-C-DQ, KJ720-C-UFD, KJ720-C-UFQ, KJ720-C-UDQ, KJ720-C-FDQ, KJ550-UFDQ, KJ550, KJ550-U, KJ550-F, KJ550-D, KJ550-Q, KJ550-UF, KJ550-UD, KJ550-UQ, KJ550-FD, KJ550-FQ, KJ550-DQ, KJ550-UFD, KJ550-UFQ, KJ550-UDQ, KJ550-FDQ, KJ550-B-UFDQ, KJ550-B, KJ550-B-U, KJ550-B-F, KJ550-B-D, KJ550-B-Q, KJ550-B-UF, KJ550-B-UD, KJ550-B-UQ, KJ550-B-FD, KJ550-B-FQ, KJ550-B-DQ, KJ550-B-UFD, KJ550-B-UFQ, KJ550-B-UDQ, KJ550-B-FDQ, KJ550-C-UFDQ, KJ550-C, KJ550-C-U, KJ550-C-F, KJ550-C-D, KJ550-C-Q, KJ550-C-UF, KJ550-C-UD, KJ550-C-UQ, KJ550-C-FD, KJ550-C-FQ, KJ550-C-DQ, KJ550-C-UFD, KJ550-C-UFQ, KJ550-C-UDQ, KJ550-C-FDQ, KJ380-UFDQ, KJ380, KJ380-U,KJ380-F, KJ380-D, KJ380-Q, KJ380-UF, KJ380-UD, KJ380-UQ, KJ380-FD, KJ380-FQ, KJ380-DQ, KJ380-UFD, KJ380-UFQ, KJ380-UDQ, KJ380-FDQ, KJ380-B-UFDQ, KJ380-B, KJ380-B-U, KJ380-B-F, KJ380-B-D, KJ380-B-Q, KJ380-B-UF, KJ380-B-UD, KJ380-B-UQ, KJ380-B-FD, KJ380-B-FQ, KJ380-B-DQ, KJ380-B-UFD, KJ380-B-UFQ, KJ380-B-UDQ, KJ380-B-FDQ, KJ380-C-UFDQ, KJ380-C, KJ380-C-U, KJ380-C-F, KJ380-C-D, KJ380-C-Q, KJ380-C-UF, KJ380-C-UD, KJ380-C-UQ, KJ380-C-FD, KJ380-C-FQ, KJ380-C-DQ, KJ380-C-UFD, KJ380-C-UFQ, KJ380-C-UDQ, KJ380-C-FDQ, KJ200-UFDQ, KJ200,

KJ200-U, KJ200-F, KJ200-D, KJ200-QKJ200-UF,

KJ200-UD, KJ200-UQ, KJ200-FD, KJ200-FQ, KJ200-DQ,

KJ200-UFD, KJ200-UFQ, KJ200-UDQ, KJ200-FDQ, KJ200-B-UFDQ, KJ200-B, KJ200-B-U, KJ200-B-F,

KJ200-B-D, KJ200-B-Q, KJ200-B-UF, KJ200-B-UD, KJ200-B-UQ, KJ200-B-FD, KJ200-B-FQ, KJ200-B-DQ,

KJ200-B-UFD, KJ200-B-UFQ, KJ200-B-UDQ, K J200-B-FDQ,KJ200-C-UFDQ, KJ200-C, KJ200-C-U,

KJ200-C-F, KJ200-C-D, KJ200-C-Q, KJ200-C-UF. KJ200-C-UD, KJ200-C-UQ, KJ200-C-FD, KJ200-C-FQ,

KJ200-C-DQ, KJ200-C-UFD, KJ200-C-UFQ,

KJ200-C-UDQ, KJ200-C-FDQ, KJ100-UFDQ, KJ100,

J100-U, KJ100-F, KJ100-D, KJ100-Q, KJ100-UF, KJ100-UD, KJ100-UQ, KJ100-FD, KJ100-FQ, KJ100-DQ, KJ100-UFD, KJ100-UFQ, KJ100-UDQ, KJ100-FDQ, KJ100-B-UFDQ, KJ100-B, KJ100-B-U, KJ100-B-F, KJ100-B-D, KJ100-B-Q, KJ100-B-UF, KJ100-B-UD, KJ100-B-UQ, KJ100-B-FD, KJ100-B-FQ, KJ100-B-DQ, KJ100-B-UFD, KJ100-B-UFQ,

KJ100-B-UDQ, KJ100-B-FDQ, KJ100-C-UFDQ, KJ100-C,

KJ100-C-U, KJ100-C-F, KJ100-C-D, KJ100-C-Q,

KJ100-C-UF, KJ100-C-UD, KJ100-C-UQ, KJ100-C-FD, KJ100-C-FQ, KJ100-C-DQ, KJ100-C-UFD, KJ100-C-UFQ,

KJ100-C-UDQ, KJ100-C-FDQ:

PCB board, structure and internal of these model(s) are the Model declaration

same, So no additional models were tested.

: 100-240V~, 50-60Hz, 120W Power Supply

EUT Clock

: ≤15MHz Frequency

2.2. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate

2.3.Test Facility

EMC Lab. : NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.5. Measurement Uncertainty

Test	Parameters	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Power Disturbance	Level accuracy (30MHz to 300MHz)	± 2.90dB	± 4.5 dB
Electromagnetic Radiated Emission (3-loop)	Level accuracy (9kHz to 30MHz)	± 3.60 dB	± 3.3 dB
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	± 5.2 dB

- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report No.: LCS200629061AE

3. MEASURING DEVICES AND TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
3	Artificial Mains	R&S	ENV216	101288	2020-06-22	2021-06-21
4	10dB Attenuator	SCHWARZBEC K	MTS-IMP-136	261115-001-0032	2020-06-22	2021-06-21
5	Impedance stabilization Network	TESEQ	ISN T800	45130	2019-10-21	2020-10-20

DISTURBANCE POWER

lte m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	EZ	EZ-EMC	/	2020-06-22	2021-06-21
2	EMI Test Receiver	R&S	ESPI	101840	2020-06-22	2021-06-21
3	Power Absorbing clamp	R&S	MDS21	4033	N/A	N/A
4	10dB Attenuator	Mini-circuits	HAT-10	15542	2020-06-22	2021-06-21

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS

lte m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2020-06-22	2021-06-21

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2020-06-22	2021-06-21

ELECTRICAL FAST TRANSIENT IMMUNITY

Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2020-06-22	2021-06-21

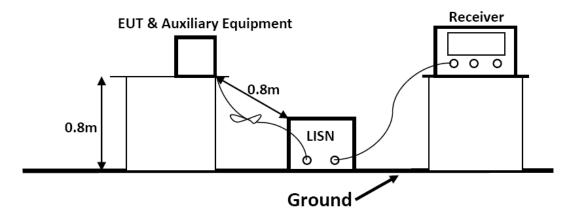
SURGES, LINE TO LINE AND LINE TO GROUND

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2020-06-22	2021-06-21

RF COMMON MODE

Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2020-06-22	2021-06-21
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2020-06-22	2021-06-21
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2020-06-22	2021-06-21
4	EM-Clamp	ZHINAN	ZN23203	14017	2020-06-22	2021-06-21

VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST


Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2020-06-22	2021-06-21

Note: All equipment is calibrated through CHINA CEPREI LABORATORY and GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.

4. TEST RESULTS

4.1. Power Line Conducted Emission Measurement

4.1.1.Block Diagram of Test Setup

4.1.2. Power Line Conducted Emission Limits

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66.0 ~ 56.0 *	59.0 ~ 46.0 *	
0.50 ~ 5.00	56.0	46.0	
5.00 ~ 30.00	60.0	50.0	

Remark: * means decreasing linearly with logarithm of frequency.

4.1.3.EUT Configuration on Test

The following equipments are installed on Conducted Emission Measurement to meet EN 55014–1 requirements and operating in a manner which tends to maximize its emission characteristics in a normal application.

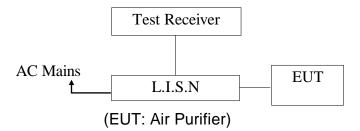
4.1.4. Operating Condition of EUT

- 4.1.4.1. Setup the EUT as shown on Section 4.1.1.
- 4.1.4.2. Turn on the power of all equipments.
- 4.1.4.3.Let the EUT work in measuring Mode 1 and measure it.

4.1.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and connected to the AC mains through a Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are investigated to find out the maximum conducted emission according to the EN 55014-1 regulations during conducted emission measurement.

The bandwidth of the field strength meter is set at 9kHz.


The frequency range from 150kHz to 30MHz is investigated. The scanning waveform please refer to the next page.

4.1.6.Test Results

PASS.

4.2. Clicks Measurement

4.2.1.Block Diagram of Test Setup

4.2.2.Clicks Measurement Standard and limit

4.2.2.1.Test Standard EN 55014-1: 2017

4.2.2.2.Test Limit

According to standard EN 55014-1, if click rate (N) less 5/min and the time of this discontinuous disturbances does not exceed 10ms, then the limit value are omitted.

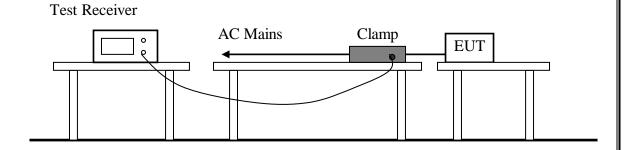
4.2.3.EUT Configuration on Test

The configuration of EUT is same as Section 4.2.1.

4.2.4. Operating Condition of EUT

- 4.2.4.1. Setup the EUT as shown Section 4.2.1.
- 4.2.4.2. Turn on the power of all equipments.
- 4.2.4.3. After that, let EUT work in test Mode 1 and measure it.

4.2.5.Test Procedure


This test is done when switch operations in thermostatically controlled appliances, automatic program controlled machines and other electrically controlled or operated appliances may generate discontinuous disturbance (Click). The measurement of disturbance shall be performed at the following restricted number of frequencies: 150kHz, 500kHz, 1.4MHz and 30MHz. At each frequency, for appliances which stop automatically, duration of the minimum number of complete programs necessary to produce 40 counted clicks or, where relevant, 40 counted clicks have not been produced, the test is stopped at the end of the program in course. The relevant click rate N. The appliance under test shall be deemed to comply with the limit if not more than a quarter of the number of the counted click registered during the observation time.

4.2.6.Test Results

PASS.

4.3. Disturbance Power Measurement

4.3.1.Block Diagram of Test Setup

4.3.2.Test Standard

EN 55014-1: 2017

4.3.3. Disturbance Power Limits

All emanations from devices or system including any network of conductors and apparatus connected there to, shall not exceed the level of field strengths specified below:

Frequency	Limits dB(pW)		
MHz	Quasi-peak Value	Average Value	
30 ~ 300	45 Increasing Linearly	35 Increasing Linearly	
	with Frequency to 55	with Frequency to 45	

	Househo similar ap				Tools	3		
1	2	3	4	5	6	7	8	9
Frequen cy range			Rated moto	•	Rated moto above 700 not exceed W) W and	Rated mot	•
(MHz)	dB (pW) Quasi-pea k	dB (pW) Average	dB (pW) Quasi-pea k	dB (pW) Averag e	dB (pW) Quasi-pea k	dB (pW) Averag e	dB (pW) Quasi-pe ak	dB (pW) Averag e
Increasing linearly with the frequency from:								
200 to 300	0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-	0 to 10 dB	-

NOTE 1 This table only applies if specified in 4.1.2.3.2.

NOTE 2 The measured result at a particular frequency shall be less than the relevant limit minus the corresponding margin (at that frequency).

4.3.4.EUT Configuration on Test

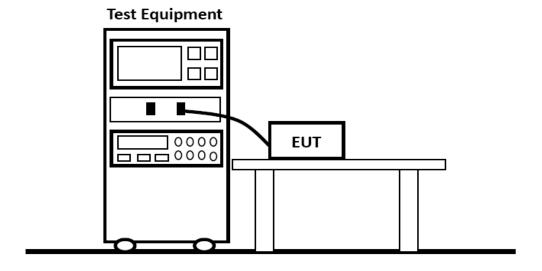
The EN 55014-1 Regulations test method must be used to find the maximum emission during radiated emission measurement. The configuration of the EUT is the same as used in conducted emission measurement.

4.3.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.1.1 except the test set up replaced as Section 4.3.1.

4.3.6.Test Procedure

The EUT is placed on the plane 0.8m high above the ground by insulating support and away from other metallic surface at least 0.4m. It is connected to the power mains through an extension cord of 6m min. The absorber clamp clamps the cord and moves from the far end to the EUT to measure the disturbing energy emitted from the cord.


The bandwidth of the field strength meter is set at 120kHz. All the test results are listed in Section 4.3.7.

4.3.7.Test Results

PASS.

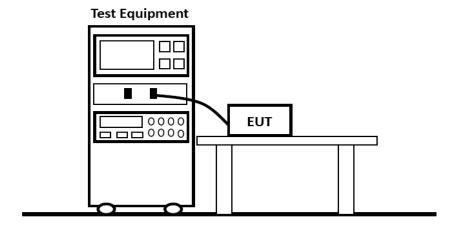
4.4. Harmonic Current Emission Measurement

4.4.1.Block Diagram of Test Setup

4.4.2.Test Standard

EN 61000-3-2: 2019, Class A

4.4.3. Operation Condition of EUT


Same as Section 4.1.4 except the test setup replaced as Section 4.4.1.

4.4.4.Test Results

Pass.

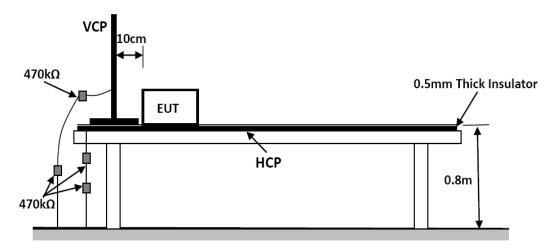
4.5. Voltage Fluctuation And Flicker Measurement

4.5.1.Block Diagram of Test Setup

4.5.2.Test Standard

EN 61000-3-3: 2013/A1: 2019

4.5.3. Operation Condition of EUT


- 4.5.3.1. Setup the EUT as shown Section 4.5.1.
- 4.5.3.2. Turn on the power of all equipments.
- 4.5.3.3.Let EUT work in test mode (On/Off) and measure it.

4.5.4.Test Results

PASS.

4.6. Electrostatic Discharge Immunity Test

4.6.1.Block Diagram of Test Setup

4.6.2.Test Standard

EN 55014-2: 2015(EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge: ±8KV; Level: 2 / Contact Discharge: ±4KV)

4.6.3. Severity Levels and Performance Criterion

4.6.3.1. Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

4.6.3.2.Performance criterion: B

4.6.4.EUT Configuration on Test

The configuration of EUT are listed in Section 4.6.1.

4.6.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.1.4, except the test set up replaced by Section 4.6.1.

4.6.6.Test Procedure

4.6.6.1.Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

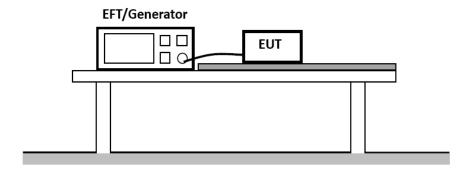
4.6.6.2.Contact Discharge

All the procedure shall be same as Section 4.6.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

4.6.6.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

4.6.6.4. Indirect Discharge For Vertical Coupling Plane


At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

4.6.7.Test Results

PASS.

4.7. Electrical Fast Transient/Burst Immunity Test

4.7.1.Block Diagram of Test Setup

4.7.2.Test Standard

EN 55014-2: 2015 (EN 61000-4-4: 2012, Severity Level: Level 2: 1KV)

4.7.3. Severity Levels and Performance Criterion

4.7.3.1. Severity level

Open Circuit Output Test Voltage ± 10%				
Level	Level On Power Supply On I/O (Input/Output			
	Lines	Signal data and control		
		lines		
1.	0.50KV	0.25KV		
2.	1.00KV	0.50KV		
3.	2.00KV	1.00KV		
4.	4.00KV	2.00KV		
X	Special	Special		

4.7.3.2.Performance criterion: B

4.7.4.EUT Configuration on Test

The configuration of EUT are listed in Section 4.7.1.

4.7.5. Operating Condition of EUT

- 4.7.5.1. Setup the EUT as shown in Section 4.7.1.
- 4.7.5.2. Turn on the power of all equipments.
- 4.7.5.3.Let the EUT work in test Mode 1 and measure it.

4.7.6.Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

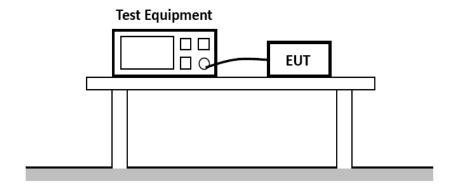
4.7.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

4.7.6.2. For signal lines and control lines ports:

No I/O ports. It's unnecessary to test.

4.7.6.3. For DC output line ports:


No DC output ports. It's unnecessary to test.

4.7.7.Test Results

PASS.

4.8. Surge Immunity Test

4.8.1.Block Diagram of Test Setup

4.8.2.Test Standard

EN 55014-2: 2015

(EN 61000-4-5: 2014+A1: 2017, Severity Level: Level 2, Line to Line: 1.0KV; Level

3: Line to Ground: 2.0KV)

4.8.3. Severity Levels and Performance Criterion

4.8.3.1. Severity level

Severity Level	Open-Circuit Test Voltage (KV)
1	0.5
2	1.0
3	2.0
4	4.0
X	Special

4.8.3.2.Performance criterion: B

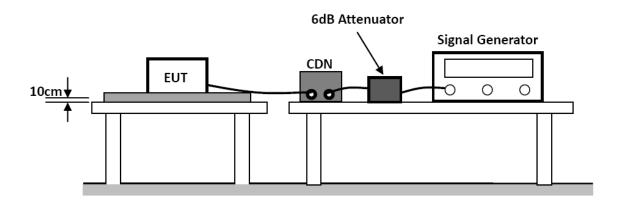
4.8.4.EUT Configuration on Test

The configuration of EUT are listed in Section 4.8.1.

4.8.5. Operating Condition of EUT

- 4.8.5.1. Setup the EUT as shown in Section 4.8.1.
- 4.8.5.2. Turn on the power of all equipments.
- 4.8.5.3.Let the EUT work in test Mode 1 and measure it.

4.8.6.Test Procedure


- 4.8.6.1. Set up the EUT and test generator as shown on Section 4.8.1.
- 4.8.6.2. For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 4.8.6.3. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test
- 4.8.6.4. Different phase angles are done individually.
- 4.8.6.5.Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

4.8.7.Test Results

PASS.

4.9. Injected Currents Susceptibility Test

4.9.1.Block Diagram of Test Setup

4.9.2.Test Standard

EN 55014-2: 2015(EN 61000-4-6: 2014, Severity Level: 3V (rms), (0.15MHz ~ 230MHz))

4.9.3. Severity Levels and Performance Criterion

4.9.3.1. Severity level

Level	Field Strength (V)
1	1
2	3
3	10
X	Special

4.9.3.2.Performance criterion: A

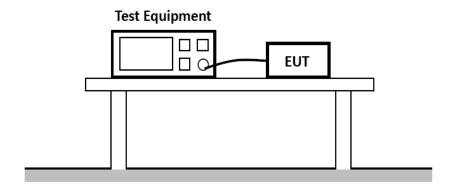
4.9.4.EUT Configuration on Test

The configuration of EUT are listed in Section 4.9.1.

4.9.5. Operating Condition of EUT

- 4.9.5.1. Setup the EUT as shown in Section 4.9.1.
- 4.9.5.2. Turn on the power of all equipments.
- 4.9.5.3.Let the EUT work in test Mode 1 and measure it.

4.9.6.Test Procedure


- 4.9.6.1. Set up the EUT, CDN and test generators as shown on Section 4.9.1.
- 4.9.6.2.Let the EUT work in test mode and measure it.
- 4.9.6.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 4.9.6.4. The disturbance signal described below is injected to EUT through CDN.
- 4.9.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 4.9.6.6. The frequency range is swept from 150kHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 4.9.6.7. The rate of sweep shall not exceed 1.5*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 4.9.6.8.Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

4.9.7.Test Results

PASS.

4.10. Voltage Dips And Interruptions Test

4.10.1.Block Diagram of Test Setup

4.10.2.Test Standard

EN 55014-2: 2015 (EN 61000-4-11: 2004+A1: 2017)

4.10.3. Severity Levels and Performance Criterion

4.10.3.1. Severity level

Test Level (%U _T)	Voltage dip and short interruptions (%U⊤)	Dura (in pe	ation eriod)
0	100	0.5	0.6
40	60	10	12
70	30	25	60

4.10.3.2.Performance criterion: C&C

4.10.4.EUT Configuration on Test

The configuration of EUT are listed in Section 4.10.1.

4.10.5. Operating Condition of EUT

- 4.10.5.1. Setup the EUT as shown in Section 4.10.1.
- 4.10.5.2. Turn on the power of all equipments.
- 4.10.5.3.Let the EUT work in test Mode 1 and measure it.

4.10.6.Test Procedure

- 4.10.6.1. Set up the EUT and test generator as shown on Section 4.10.1.
- 4.10.6.2. The interruptions is introduced at selected phase angles with specified duration.
- 4.10.6.3. Record any degradation of performance.

4.10.7.Test Results

PASS.

ANNEX A

(Test photograph)

Photo of Power Line Conducted Measurement

Photo of Disturbance Power Test

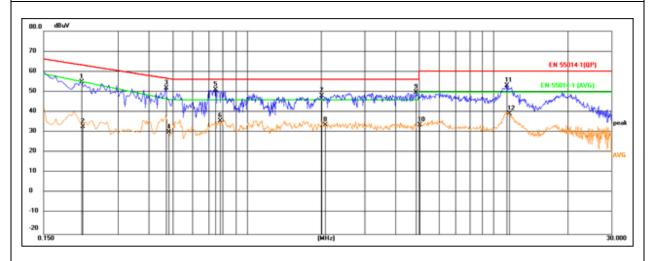
Photo of Harmonic & Flicker Measurement

Photo of Electrostatic Discharge Test

Photo of Electrical Fast Transient/Burst Test & Surge Immunity Test

Photo of Voltage Dips and Interruptions Test

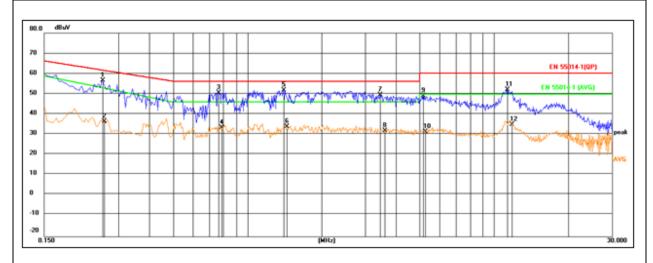
Photo of Injected Currents Susceptibility Test


ANNEX B

(Emission and Immunity test results)

B.1 POWER LINE CONDUCTED EMISSION MEASUREMENT

Environmental Conditions:	23.3℃, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	KJ1500-UFDQ
Test Mode:	Mode 1
Test Engineer:	Daiwei Dai
Pol:	Line


Detailed results are shown below

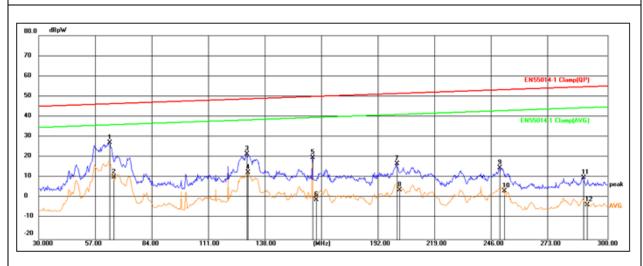
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2130	35.76	19.19	54.95	63.09	-8.14	QP
2	0.2162	13.78	19.20	32.98	55.05	-22.07	AVG
3	0.4695	32.49	19.31	51.80	56.52	-4.72	QP
4	0.4837	11.04	19.31	30.35	46.36	-16.01	AVG
5	0.7440	31.74	19.31	51.05	56.00	-4.95	QP
6	0.7755	16.46	19.30	35.76	46.00	-10.24	AVG
7	2.0040	28.74	19.40	48.14	56.00	-7.86	QP
8	2.0760	14.34	19.40	33.74	46.00	-12.26	AVG
9	4.8255	30.52	19.49	50.01	56.00	-5.99	QP
10	5.0235	14.34	19.49	33.83	50.00	-16.17	AVG
11	11.2785	33.39	19.81	53.20	60.00	-6.80	QP
12	11.5935	19.51	19.82	39.33	50.00	-10.67	AVG

Environmental Conditions:	23.3℃, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	KJ1500-UFDQ
Test Mode:	Mode 1
Test Engineer:	Daiwei Dai
Pol:	Neutral

Detailed results are shown below

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2580	37.53	19.24	56.77	61.50	-4.73	QP
2	0.2625	17.29	19.24	36.53	52.96	-16.43	AVG
3	0.7665	31.45	19.31	50.76	56.00	-5.24	QP
4	0.7845	14.35	19.30	33.65	46.00	-12.35	AVG
5	1.4010	32.70	19.32	52.02	56.00	-3.98	QP
6	1.4460	14.81	19.32	34.13	46.00	-11.87	AVG
7	3.4485	30.16	19.46	49.62	56.00	-6.38	QP
8	3.5880	12.43	19.46	31.89	46.00	-14.11	AVG
9	5.1405	29.69	19.49	49.18	60.00	-10.82	QP
10	5.2530	11.97	19.50	31.47	50.00	-18.53	AVG
11	11.2785	32.39	19.81	52.20	60.00	-7.80	QP
12	11.7915	15.22	19.84	35.06	50.00	-14.94	AVG

The click rate (N=1/2.1=0.48<5) of the EUT is less than 5/min and the time discontinuous disturbances (\triangle T=4ms<10ms) does not exceed 10ms.Accor EN 55014-1, the limit values are omitted.
LIN 33014-1, the little values are officed.

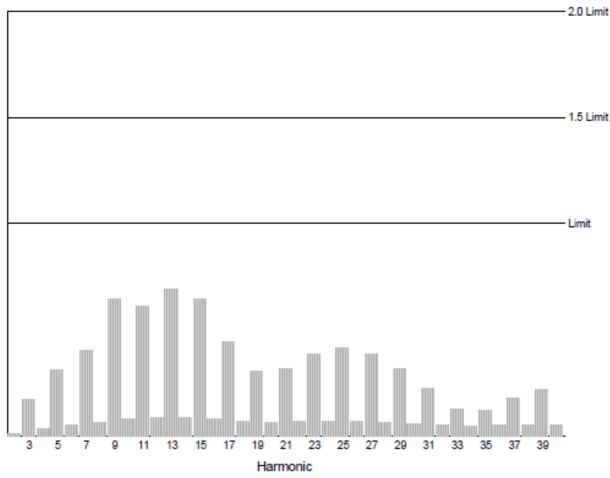

Report No.: LCS200629061AE

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

B.3 Disturbance Power Measurement

Environmental Conditions:	23.3℃, 53.7% RH
Test Voltage:	AC 230V,50Hz
Test Model:	KJ1500-UFDQ
Test Mode:	Mode 1
Test Engineer:	Daiwei Dai

Detailed results are shown below



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBpW)	(dB)	(dBpW)	(dBpW)	(dB)	
1	63.6000	17.41	10.11	27.52	46.24	-18.72	QP
2	65.5199	0.38	10.11	10.49	36.32	-25.83	AVG
3	128.6400	9.79	12.10	21.89	48.65	-26.76	QP
4	129.3600	0.82	12.10	12.92	38.68	-25.76	AVG
5	160.0200	8.23	12.00	20.23	49.82	-29.59	QP
6	161.7600	-12.37	11.98	-0.39	39.88	-40.27	AVG
7	199.9800	5.23	11.82	17.05	51.30	-34.25	QP
8	201.3600	-7.36	11.75	4.39	41.35	-36.96	AVG
9	248.7600	4.49	10.67	15.16	53.10	-37.94	QP
10	250.9200	-6.90	10.69	3.79	43.18	-39.39	AVG
11	288.6600	-0.60	11.02	10.42	54.58	-44.16	QP
12	290.1600	-13.94	11.06	-2.88	44.64	-47.52	AVG

B.4 Harmonic Current Emission Measurement

Test Voltage:		AC 230V,50Hz		
Test Model:		KJ1500-UFDQ		
Test Engineer:		Daiwei Dai		
Detailed results are sho	own b	elow		
Harmonic Results	Note	es:		
Against Chosen Limits:				
PASS				
FASS				
Test Parameter Details			User Entered	Measured
Operating Frequency:			50	49.9840
Operating Voltage:			230	229.5303
Specified Power:			0.0000	92.7542
Fundamental Current:			0.0000	0.4103
Power Factor:			0.0000	0.4874
Average Input Current:				0.8207
Maximum POHC:				0.0783
POHC Limit:				0.2514
Maximum THC:				0.7213
Minimum Power:			75	
Class Multiplier:			1.0000	
Test Duration:			00:02:30	

Report No.: LCS200629061AE

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1 7100		
PASS		
Overall Result:		

Class	Class A
Class Multiplier	1

Harm	Limit 1	Limit 2	Average Reading	41 42	Max Reading	Ê	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	41 42	Max Reading	Å	Pass FAIL
2	1.0800A	1.6200A	9.970mA	< <	13.27mA	_	Pass	3	2.3000A	3.4500A	383.6mA	/ /	388.1mA	_	Pass
4	430.0mA	645.0mA	10.41mA	< <	13.99mA	/	Pass	5	1.1400A	1.7100A	351.3mA	V V	355.1mA	<	Pass
6	300.0mA	450.0mA	10.76mA	/ /	14.61mA	/	Pass	7	770.0mA	1.1550A	306.8mA	/ /	310.2mA	_	Pass
8	230.0mA	345.0mA	10.71mA	< <	14.70mA	^	Pass	91	400.0mA	600.0mA	254.1mA	< <	257.1mA	<	Pass
10	184.0mA	276.0mA	10.15mA	/ /	14.05mA	/	Pass	11	330.0mA	495.0mA	197.9mA	/ /	200.5mA	✓	Pass
12	153.3mA	230.0mA	9.083mA	/	12.70mA	/	Pass	13	210.0mA	315.0mA	143.1mA	/ /	145.3mA	/	Pass
14	131.4mA	197.1mA	7.645mA	//	10.82mA	\	Pass	15	150.0mA	225.0mA	94.37mA	/ /	96.36mA	/	Pass
16	115.0mA	172.5mA	6.115mA	< <	8.796mA	/	Pass	17	132.3mA	198.5mA	56.29mA	< <	58.56mA	/	Pass
18	102.2mA	153.3mA	4.791mA	/	7.021mA	\	N/A	19	118.4mA	177.6mA	35.10mA	//	36.17mA	\	Pass
20	92.00mA	138.0mA	3.955mA	< <	5.887mA	/	N/A	21	107.1mA	160.7mA	33.06mA	/ /	34.06mA	/	Pass
22	83.63mA	125.4mA	3.628mA	< <	5.398mA	/	N/A	23	97.82mA	146.7mA	36.69mA	< <	37.60mA	/	Pass
24	76.66mA	115.0mA	3.474mA	< <	5.160mA	/	N/A	25	90.00mA	135.0mA	36.63mA	/ /	37.42mA	/	Pass
26	70.76mA	106.1mA	3.242mA	< <	4.791mA	/	N/A	27	83.33mA	125.0mA	31.46mA	/ /	32.15mA	_	Pass
28	65.71mA	98.57mA	2.814mA	//	4.182mA	/	N/A	29	77.58mA	116.3mA	23.46mA	//	24.63mA	/	Pass
30	61.33mA	92.00mA	2.304mA	< <	3.414mA	/	N/A	31	72.58mA	108.8mA	14.39mA	< <	16.17mA	/	Pass
32	57.50mA	86.25mA	1.889mA	11	2.734mA	/	N/A	33	68.18mA	102.2mA	7.166mA	/ /	8.376mA	/	Pass
34	54.11mA	81.17mA	1.735mA	11	2.425mA	/	N/A	35	64.28mA	96.42mA	7.056mA	/ /	7.798mA	✓	Pass
36	51.11mA	76.66mA	1.752mA	11	2.412mA	✓	N/A	37	60.81mA	91.21mA	10.33mA	V V	10.86mA	✓	Pass
38	48.42mA	72.63mA	1.801mA	11	2.490mA	/	N/A	39	57.69mA	86.53mA	12.05mA	/ /	12.47mA	✓	Pass
40	46.00mA	69.00mA	1.685mA	< <	2.389mA	✓	N/A								

<L1 : Reading is below limit 1.

<L2 : Reading is below limit 2.

N/A: Harmonic current below 0.6% of rated current or 5mA, whichever is greater, are disregarded.

B.5 Voltage Fluctuation And Flicker Measurement

Test Voltage:	AC	230V,50Hz		
Test Model:	KJ	1500-UFDQ		
Test Engineer:	Da	iwei Dai		
Detailed results	are shown below	V		
	Notes: Measurement method	- Voltage		
	Pst	dc (%)	dmax (%)	Tmax(> 3.3%)(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.090	0.006	0.233	0

B.6 Electrostatic Discharge Immunity Test

Electrostatic Discharge Test Results								
Standard	□ IEC 61000-4-2 ☑ EN 61000-4-2							
Applicant	Guangdong	Cinotex Er	vironmental	Sci-Tech (Co., Ltd.			
EUT	Air Purifier			Tempera	iture	23.4℃		
M/N	KJ1500-UF	DO		Humidity		53.7%		
Criterion	В			Pressure		1021mbar		
Test Mode	Mode 1					Daiwei Dai		
		01.I=		Test Eng	Jilleel	Daiwei Dai		
Test Voltage	AC 230V/50		r Diocharga					
	-	AI Test Levels	r Discharge		Re	sults		
Test Points				B I		Performa	ance	
	± 2kV	± 4kV	± 8kV	Passed	Fail	Criterion		
Front	\boxtimes		\boxtimes				₫В	
Back	\boxtimes	\boxtimes					В	
Left	\boxtimes	\boxtimes					В	
Right							В	
Тор					<u> </u>		В	
Bottom	\boxtimes	\boxtimes	\boxtimes				В	
			act Dischar	ge				
	-	Test Levels			Res	sults		
Test Points	± 2 kV		±4 kV	Passed	Fail	Criterion	1	
Front			\boxtimes	\square			₫В	
Back			\boxtimes				В	
Left					<u> </u>		В	
Right					<u> </u>		В	
Тор			\boxtimes		<u> </u>		В	
Bottom							В	
	1		ge To Horiz	ontal Coup				
Side of EUT		Test Levels			Res	sults		
Side of EU1	± 2 kV	,	± 4 kV	Passed	Fail	Performa Criterion		
Front	\boxtimes		\boxtimes			□ A ≥	₫В	
Back	\boxtimes		\boxtimes			□ A	₫В	
Left	\boxtimes		\boxtimes			□ A ≥	В	
Right	\boxtimes		\boxtimes	\boxtimes		□ A	В	
Discharge To Vertical Coupling Plane								
		Test	Levels		Re	sults		
Side of EUT	± 2 kV		± 4 kV	Passed	Fail	Performa Criterion		
Front	\boxtimes		\boxtimes			□ A ▷	₫В	
Back	\boxtimes		\boxtimes			□ A ▷	В	
Left	\boxtimes		\boxtimes			□ A ▷	₫В	
Right	\boxtimes		\boxtimes			□ A	₫В	

B.7 Electrical Fast Transient/Burst Immunity Test

Electrical Fast Transient/Burst Test Results						
Standard	□ IEC 61000-4-4 ☑ EN 61000-4-4					
Applicant	Guangdong Cinotex Environmental S	Guangdong Cinotex Environmental Sci-Tech Co., Ltd.				
EUT	Air Purifier	Temperature	23.5℃			
M/N	KJ1500-UFDQ	Humidity	53.2%			
Test Mode	Mode 1	Criterion	В			
Test Engineer	Daiwei Dai	Test Voltage	AC 230V/50Hz			

Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
N	1KV	PASS	PASS
PE	1KV	PASS	PASS
L-N	1KV	PASS	PASS
L-PE	1KV	PASS	PASS
N-PE	1KV	PASS	PASS
L-N-PE	1KV	PASS	PASS
Signal Line			
I/O Cable			

Note:

B.8 Surge Immunity Test

Surge Immunity Test Result							
Standard	□ IEC 61000-4-5 ☑ EN 61000-4-	□ IEC 61000-4-5 ☑ EN 61000-4-5					
Applicant	Guangdong Cinotex Environmental So	Guangdong Cinotex Environmental Sci-Tech Co., Ltd.					
EUT	Air Purifier	Temperature	23.1℃				
M/N	KJ1500-UFDQ	Humidity	54.5%				
Test Mode	Mode 1	Criterion	В				
Test Engineer	Daiwei Dai	Test Voltage	AC 230V/50Hz				

Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
	+	90°	5	1.0	PASS
	-	270°	5	1.0	PASS
L-N					
	_	000		4.0	D400
	+	90°	5 5	1.0	PASS
	-	270°	5	1.0	PASS
L-PE					
	+	90°	5	1.0	PASS
	-	270°	5	1.0	PASS
N-PE					
Signal Line					
Note			•		

B.9 Injected Currents Susceptibility Test

Injected Currents Susceptibility Test Results				
Standard	□ IEC 61000-4-6 ☑ EN 61000-4-6			
Applicant	Guangdong Cinotex Environmental Sci-Tech Co., Ltd.			
EUT	Air Purifier	Temperature	23.6℃	
M/N	KJ1500-UFDQ	Humidity	54.5%	
Test Mode	Mode 1	Criterion	Α	
Test Engineer	Daiwei Dai	Test Voltage	AC 230V/50Hz	

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15 ~ 230	AC Mains	3V	Α	PASS

Remark:

1. Modulation Signal:1kHz 80% AM

2. Measurement Equipment:

Simulator: CIT-10 (FRANKONIA)

CDN : □CDN-M2 (SWITZERLAND EMTEST)
□CDN-M3 (SWITZERLAND EMTEST)

Note:

B.10 Voltage Dips And Interruptions Test

Voltage Dips And Interruptions Test Results				
Standard	□ IEC 61000-4-11 ☑ EN 61000-4-11			
Applicant	Guangdong Cinotex Environmental Sci-Tech Co., Ltd.			
EUT	Air Purifier	Temperature	23.3℃	
M/N	KJ1500-UFDQ	Humidity	54.7%	
Test Mode	Mode 1	Criterion	C&C	
Test Engineer	Daiwei Dai	Test Voltage	AC 230V/50Hz	

Test Level	Voltage Dips & Short Interruptions	Duration (in periods)		Criterion	Result
% U _⊤	% U _T	50Hz	60Hz		
40	60	10P	12P	С	PASS
70	30	25P	60P	С	PASS
0	100	0.5P	0.6P	С	PASS

Note:

ANNEX C

(External and internal photos of the EUT)

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

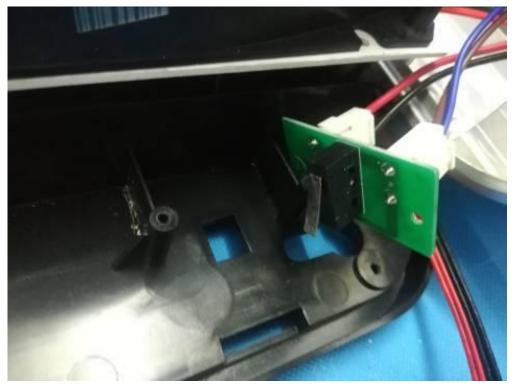


Fig. 9

Fig. 10

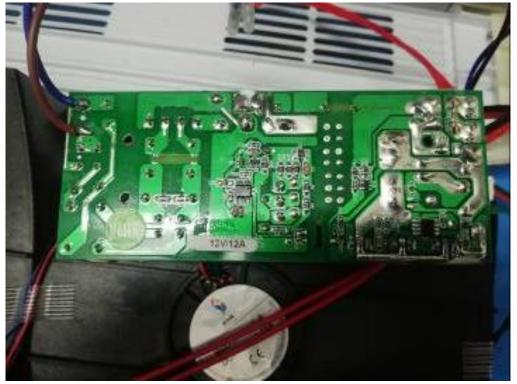


Fig. 11

-----THE END OF TEST REPORT-----