

TEST REPORT

Reference No.....: WTD22F01007667N

Applicant.....: : Martin Industries Ltd.

Address...... Unit 8 . Milton Business Centre . Wick Drive . New Milton .

Hampshire . BH25 6RH, The United Kingdom.

Manufacturer: Martin Industries Ltd.

Address...... Unit 8 . Milton Business Centre . Wick Drive . New Milton .

Hampshire . BH25 6RH, The United Kingdom.

Product Name.....: Air Purifier

Model No.....: AXP-200, AXP-400, AXP-800, AXP-1200, AXP-1600

Photobiological safety of lamps and lamp systems

Standards..... : EN 62471:2008

IEC 62471:2006 (First Edition)

BS EN 62471

Date of Receipt sample....: 2022-01-14

Date of Test.....: 2022-01-14 to 2022-01-27

Date of Issue..... : 2022-01-27

Test Report Form No......: WPL-62471A-01A

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381

E-mail:info@waltek.com.cn

Compiled by:

Finn Yu / Project Engineer

Approved by:

Akin Xu / Manager

Reference No., WIDZZFOTOO7007N Fagi	ce No.: WTD22F01007667N	Page 2
-------------------------------------	-------------------------	--------

Test item description:	Air Purifier			
Trade Mark:	None			

General remarks:

- "(See Enclosure #)" refers to additional information appended to the report.
- "(See remark #)" refers to a remark appended to the report.
- "(See appended table)" refers to a table appended to the report.

Throughout this report a comma (point) is used as the decimal separator.

Remark:

- Measurement was conducted at voltage 240VAC 50Hz and at a stable ambient temperature 25°C±5°C.
- 2. All models are similar except to model name and enclosure shape are different. Unless otherwise specified, all tests were performed on model AXP-1600 to represent the other similar models.
- 3. Detail information for models covered in this report as below:

Item	Model	Ratings	CCT	Driver
⁴⁰ 1 ⁴	AXP-1600	100-240VAC, 50/60Hz	MIT MILL	Aur Aur.
2	AXP-200	100-240VAC, 50/60Hz	A 20	36th 376th
3	AXP-400	100-240VAC, 50/60Hz	11/21/2	34, 74,
4	AXP-800	100-240VAC, 50/60Hz	10t -50t .	الن المنطقين المنطقة ا
5	AXP-1200	100-240VAC, 50/60Hz		

Summary of testing:

The tests were conducted under luminaire/lamp/LED rating.

All tests were carried out at model AXP-1600.

 $\alpha = 0.1000$ radian, distance between lamp and sensor: 200.0 mm.

Test item particulars	See below
Tested lamp:	
Tested lamp system:	No lamp system
Lamp classification group:	exempt⊠ risk 1□ risk 2□ risk 3□
Lamp cap:	" a star star star star
Bulb:	THE METER WALLE WALLE WALL WALL WALL
Rated of the lamp::	See model list in page 2
Furthermore marking on the lamp:	None
Seasoning of lamps according IEC standard:	None
Used measurement instrument:	See page 14
Temperature by measurement:	25 ± 5 °C
Information for safety use:	the state of the state of the state of

Possible test case verdicts:

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTD22F01007667N Page 3 of 16

_	test object does meet the requirement P (Pass)
-	test object does not meet the requirement: F (Fail)
Ge N/	eneral product information:
300	

WALTER

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
	THE THE THE STATE WITH SHIP SHIP	24. 24. 2.	
4	EXPOSURE LIMITS	The stiff and the	yr P
4.1	General	11. 24. 2	P
ir istor	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	THE SHALL SHALL SHALL	Р
all little	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²		P
4.3	Hazard exposure limits	The the to	Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye	Liek Walter Marter M	Р
ies white	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	et whitet whitet whi	Pari
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, E _s , of the light source shall not exceed the levels defined by:	MUTEL MUTEL MUTEL	MATER WALTER
riter Milit	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \qquad \text{J-m}^{-2}$	et gritet un	Р
ALTER SERVICE	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	Marie Marie Marie	P
aller a	$t_{\text{max}} = \frac{30}{E_{\text{S}}}$ s	MALTER MALTE WALL	JIP JE
4.3.2	Near-UV hazard exposure limit for eye	ALTER MALTER MALTER AN	Р
SEEK SARCES SARC	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	Whitek whitek white	EK TEP Whi White White White Tek
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	and the test of the	P
EF WILLER	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	the second	P
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р

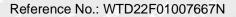
	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
	N N 20 50 50 50 30 30 30 3	the state of the	
ing and	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L_B , shall not exceed the levels defined by:		P
STER .	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \qquad \text{fc}$	or $t \le 10^4 \text{ s}$ $t_{\text{max}} = \frac{10^6}{L_{\text{B}}}$	Р
on s Tell si	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad W \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	of the the life	Р
4.3.4	Retinal blue light hazard exposure limit - small source	The Man Man	N
ier _{Vil} atie	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	White white white w	N
Mrs.	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 J \cdot m^{-2}$	Martin Marin Marin Mari	N
ings in	$E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	LIES MILIES WHITE WHITE	N N
4.3.5	Retinal thermal hazard exposure limit		Р
	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(\lambda)$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	Martin Antick Antick and	P
rliet pri	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}}$ W · m ⁻² · sr ⁻¹ (1)	10 μs ≤ t ≤ 10 s)	Р
4.3.6	Retinal thermal hazard exposure limit – weak visual stir	mulus	Р
MARTIER MARTIER	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	uncies whiles whiles whi	P P P P P P P P P P P P P P P P P P P
LTEN WILL	$L_{IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot m^{-2} \cdot sr^{-1}$	Et anitet anitet unitet	Р
4.3.7	Infrared radiation hazard exposure limits for the eye	e die die die	Р

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
	THE THE THE STILL STILL SHIP SHIP	Apr. Apr. 20	
ancia Test ganci Start	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	CLIFE WALTER WALTER WALTER	P
Mariek o	$E_{\text{IR}} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W · m ⁻²	And And And	Р
	For times greater than 1000 s the limit becomes:	no the to	Р
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \qquad \text{W} \cdot \text{m}^{-2}$	Life Martin Maritin M	Р
4.3.8	Thermal hazard exposure limit for the skin	the wife with the	A ₁ b ₂
WILLER	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	attle state and	P
Necessary	$E_{\text{H}} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda} (\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25}$ J · m ⁻²	Lift night spilled	P.F
	والمراقع فالمراقع فالمواجه		de de
5	MEASUREMENT OF LAMPS AND LAMP SYSTEM	IS ME THE THE	Р
5.1	Measurement conditions		P
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	Marie Andrew Andrew	P
5.1.1	Lamp ageing (seasoning)	They are are	N
3165		1 July 196	.0 AV

5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	P. W
5.1	Measurement conditions	Р
SILES.	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	WILL WAS DEED THEFT
5.1.1	Lamp ageing (seasoning)	N
ners on	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	SE N
5.1.2	Test environment	of GOP D
e white	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	Autrick March
5.1.3	Extraneous radiation	CONTRACTOR P
riter and	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	TEL MULTER AND
5.1.4	Lamp operation	P
	Operation of the test lamp shall be provided in accordance with:	ur ur Pi
7/10	the appropriate IEC lamp standard, or	N

Reference No.: WTD22F01007667N Page 7 of 16

	IEC/EN 62471			
Clause	Requirement + Test	Result – Remark	Verdict	
	THE THE STATE STATE STATE SHALL SHALL	71, 21, 2,		
recent with	the manufacturer's recommendation	TEN NITER WITER	Р	
5.1.5	Lamp system operation		P	
e le	The power source for operation of the test lamp shall be provided in accordance with:	a feet white white and	Р	
ALCO VI	the appropriate IEC standard, or	1 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	P	
- 1	- the manufacturer's recommendation	Au. 30.	Р	
5.2	Measurement procedure	Set Ster Willer	Р	
5.2.1	Irradiance measurements	191 21, 2	P	
in our	Minimum aperture diameter 7mm.	Clerk Stiffs and and	Р	
et de	Maximum aperture diameter 50 mm.		. P	
- City	The measurement shall be made in that position of the beam giving the maximum reading.	te white with whi	W P	
Allen .	The measurement instrument is adequate calibrated.	WHITE WILLS WHITE	P	
5.2.2	Radiance measurements	at at some	P	
5.2.2.1	Standard method	The Pall of A	Р	
The Marie	The measurements made with an optical system.	de la julia de	Р	
H WALLEY	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	and and	+ P	
5.2.2.2	Alternative method	of the other mater	JAN JAP	
nit ^{et} an	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	Street Matter Militer W	of the	
5.2.3	Measurement of source size	the wife out it into	Р	
WALLEY.	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	White white white	Put	
5.2.4	Pulse width measurement for pulsed sources	Self Self Self	Ñ	
TLER MUT	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	of the sanited sanited san	N Zer	
5.3	Analysis methods	et it it it it is	P	
5.3.1	Weighting curve interpolations	70, 20, 20,	Р	



- de	IEC/EN 62471			
Clause	Requirement + Test	Result – Remark	Verdict	
,	the title title title either serie serie	Th. 30. 2. 1.		
ancie an	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	P	
5.3.2	Calculations		Р	
whitek whitek	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	HALTER MALTER MALTER MALTER	P	
5.3.3	Measurement uncertainty		Р	
re en	The quality of all measurement results must be quantified by an analysis of the uncertainty.	all etter merte same and	Р	

6	LAMP CLASSIFICATION		Р
Aller.	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	Р
unice u	for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm	ALTER MILITER WALTER WAS	N
, and	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	Marie Marie Marie	P
6.1	Continuous wave lamps	RETURN OF THE SHALL S	J/P
6.1.1	Exempt Group	** A B	A P
pr sil	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	OF AST TOTAL	Р
k gel	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	The the top	Р
All All	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	and and and	Р
The s	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	Marker White Albert All	Р
ar an	– a retinal thermal hazard (L _R) within 10 s, nor	THE STEE WITE WITE	Р
EN OFF	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 	4 At 5th 5th	Р
WILLEY.	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 1000 s are in Risk Exempt Group	White white water	P Mile Mali

Waltek Testing Group (Foshan) Co., Ltd.

http://www.waltek.com.cn

	IEC/EN 62471	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict			
	with the state of the parties with the	A. 2.				
6.1.2	Risk Group 1 (Low-Risk)	LITER SALTER SALTER SA	N .			
56. S. 18.55	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	at alt sait s	N			
e State	 an actinic ultraviolet hazard (E_s) within 10000 s, nor 		N			
4,	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 	Auto ant an	N			
25	 a retinal blue-light hazard (L_B) within 100 s, nor 	at the set	N°			
	 a retinal thermal hazard (L_R) within 10 s, nor 	Mrs. Mrs. Com.	N			
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 	LIER WITER WITER ON	of N			
TEN SHOUTE	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 100 s are in Risk Group 1.	A MULTER WALTER SIRES	N			
6.1.3	Risk Group 2 (Moderate-Risk)	The State Hills	, N			
and the same	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	At the Sut	NA NA			
e e	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 		N			
2,	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	The street	N			
ik şanifer	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 	The source of the source	THE THE			
THE TEN	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	atter street sources	MATER NO			
ni ^{rek} uri	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 	ar and the	STEEL N-			
SEL MARTIN	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 10 s are in Risk Group 2.	et milet milet smil	N			
6.1.4	Risk Group 3 (High-Risk)		N			
CH.	Lamps which exceed the limits for Risk Group 2 are in Group 3.	Murice Auti, Auti,	N			
6.2	Pulsed lamps	Ster Willer Willer	N S			
litelle and	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	All the state of	SEE N. N.			
er wite	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	the shift white	N			
MITELS.	The risk group determination of the lamp being tested shall be made as follows:	All The State	N.C			

Page 10 of 16

Reference No.: WTD22F01007667N

	IEC/EN 62471	210 24 25	
Clause	Requirement + Test	Result – Remark	Verdict
	At the the with miles with the	741. 24. 2.	الر ا
ALCON ALC SON TO SON	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High- Risk) 	PUTER MALTER MALTER MALT	Je N
e sinciple	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	- Water aware and	N
anliek Alekan	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	STEEL SHOTEL SHOTEL SHOTEL	N

Wavelength λ, nm	UV hazard function $S_{\text{\tiny UV}}(\lambda)$	Wavelength λ, nm	UV hazard function S _ω (λ)
200	0,030	313*	0,006
205	0,051	315	0,003
210	0,075	316	0,0024
215	0,095	317	0,0020
220	0,120	318	0,0016
225	0,150	319	0,0012
230	0,190	320	0,0010
235	0,240	322	0,00067
240	0,300	323	0,00054
245	0,360	325	0,00050
250	0,430	328	0,00044
254*	0,500	330	0,00041
255	0,520	333*	0,00037
260	0,650	335	0,00034
265	0,810	340	0,00028
270	1,000	345	0,00024
275	0,960	350	0,00020
280*	0,880	355	0,00016
285	0,770	360	0,00013
290	0,640	365*	0,00011
295	0,540	370	0,000093
297*	0,460	375	0,000077
300	0,300	380	0,000064
303*	0,120	385	0,000053
305	0,060	390	0,000044
308	0,026	395	0,000036
310	0,015	400	0,000030


Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

Table 4.2	Spectral weighting sources	functions for assessing retinal hazards fr	om broadband optical F
The A	Wavelength nm	Blue-light hazard function B (λ)	Burn hazard function R (λ)
100 10	300	0,01	The state with the state of
	305	0,01	the state of the s
et si	310	0,01	A B B 50
-01	315	0,01	City They They the
-	320	0,01	
- 300	325	0,01	et de een een
67,	330	0,01	"" " " " " " " " " " " " " " " " " " "
.J.	335	0,01	
10° 1	340	0,01	The state of the s
	345	0,01	4, 4, 4
10° 3	350	0,01	The second second
σ_{th}	355	0,01	the the the
اد ب	360	0,01	
	365	0,01	Att of the second
23,	370	0,01	A 24 A A
100	375	0,01	, L 34 35
1100	380	0,01	0,1
	385	0,013	0,13
A	390	0,025	0,25
S. 10.	395	0,05	0,5
4	400	0,10	1,0
e	405	0,20	2,0
2.	410	0,40	4,0
ائي <u>ب</u>	415	0,80	8,0
10	420	0,90	9,0
34.1	425	0,95	9,5
100	430	0,98	9,8
3 m	435	1,00	10,0
	440	1,00	10,0
J (1)	445	0,97	9,7
400	450	0,94	9,4
4 .6	455	0,90	9,0
	460	0,80	8,0
	465	0,70	7,0
·	470	0,62	6,2
The s	475	0,55	5,5
	480	0,45	4,5
, O' .	485	0,40	4,0
3, 5,0	490	0,22	2,2
A	495	0,16	1,6
· July	500-600	10[(450-\)/50]	1,0
	600-700	0,001	1,0
	700-1050	2. 7.0	10 ^[(700-λ)/500]
31	1050-1150	the state of the state of	0,2
- 160	1150-1200	the transfer of the transfer of the	0,2.10 ^{0,02(1150-λ)}
. (1)	1200-1400	*	0,02

Table 5.4	Summary of the ELs for the	surface of the sl	kin or cornea (irradiance ba	sed values) P
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m-2
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta\lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0
Eye IR	$E_IR = \sum E_\lambda \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100
Skin therma	$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}

Table 5.5	Summary of the ELs for t	he retina (radian	ce based valu	es)	P
Hazard Nan	ne Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)
Blue light	$L_B = \sum L_A \bullet B(A) \bullet \Delta A$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100
Retinal thermal	$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/α

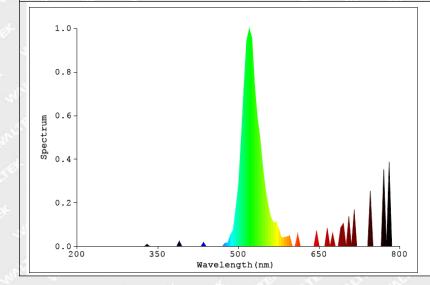
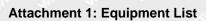


Table 6.1 (AXP-1600;) Emission limits for risk groups of continuous wave lamps (based on EU Directive 2006/25/EC) α = 0.1000rad

	Action				Em	ission Mea	suremen	t		
Risk	spectr	Symbol	Units	Exe	empt	Low	risk	Mod	risk	
	um		,		Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{υν} (λ)	Es	W•m⁻²	0,001	5.479e-9	0,003	- CEN	0,03	5128 175	
Near UV	578	Euva	W•m⁻²	0.33	3.555e-5	33	310	100		
Blue light	Β(λ)	L _B	W•m⁻ ²•sr⁻¹	100	2.011e-2	10000	ruser and	4000000	ell de	
Blue light, small source	Β(λ)	Ев	W•m⁻²	0.01	er _{str} ier	1,0	564- -1104 - 1564	400	giniter Sites	
Retinal thermal	R(λ)	L _R	W•m⁻ ²•sr⁻¹	28000/α	6.205e-1	28000/α		71000/α	er 13	
Retinal thermal, weak	R(λ)	L _{IR}	W•m ⁻ ² •sr ⁻¹	545000 0.0017 ≤α≤ 0.011	ANCTO WALTER	SINCE OF	ner and		WALTER	
visual stimulus **			-51	6000/α 0.011 ≤α≤ 0.1	# 12 ¹ 2 ¹	muret un 8	3.214e-3	WALTER TEX	ingris (
IR radiation , eye	<u></u>	E _{IR}	W•m⁻²	100	4.417e-4	570		3200	24 15 24 15	


^{*} Small source defined as one with α <0.011 radian. Averaging field of view at 10000 s is 0.1 radian.

^{**} Involves evaluation of non-GLS source.

LB RFOV	Measured	Limit
(mrad)	(W/m2/sr)	(W/m2/sr)
100(Exempt	2.011e-2	1.000e2
Risk Group)	2.0116-2	1.00062
11(Risk	2.317e-2	1.000e4
Group 1)	2.3176-2	1.00064
1.7(Risk	2.435e-2	4.000e6
Group 2)	2.4336-2	4.00000
LR RFOV	Measured	Limit
(mrad)	(W/m2/sr)	(W/m2/sr)
11(Exempt	6.205e-1	2.800e5
Risk Group)	0.203 e -1	2.800e3
11(Risk	6.205e-1	2.800e5
Group 1)	0.2006-1	2.600e3
1.7(Risk	6.521e-1	7.100e5
Group 2)	0.5216-1	7.100e5


Reference No.: WTD22F01007667N

Equipment	Model/Type	Cal. Due. Date
Biosafety ultraviolet light leaking spectrum analysis system	EVERFINE PMS-700	2023-01-11
Standards reflect the whiteboard	EVERFINE ⊄60	2023-01-11
Precise digital display dc current stabilized voltage supply	EVERFINE WY305-V1	2023-01-11
High standards of stable ultraviolet radiation power	EVERFINE UVS-8005	2023-01-11
Ultraviolet radiation standard lamp	EVERFINE SIS-631	2023-01-11
D204BH ray radiation intensity standard lamp	EVERFINE D204BH-3200K	2023-01-11
AC power source	ACPOWER AFC-110104F	2023-01-11
Temperature & Humidity Datalogger	Testo 608-H1	2023-01-11



Photo 1

===== End of Report =====